
Journal of Engineering Mathematics, Vol. 10, No. 1, January 1976 
Noordhoff International Publishing-Leyden 
Printed in The Netherlands 

41 

Flow with convective acceleration through a porous medium 

K. Y A M A M O T O *  

Physics Department, Eindhoven University of Technology, Eindhoven, The Netherlands 

N. I W A M U R A * *  

Department of Aeronautical Engineering, Kyoto University, Kyoto, Japan 

(Received January 22, 1975 and in revised form June 23, 1975) 

S U M M A R Y  
The flow streaming into a porous and permeable medium with arbitrary but smooth wall surface is considered 
on the basis of the Euler equation (in the pure fluid region) and a generalized Darcy's law in which the con- 
vective acceleration is taken into account. The asymptotic behavior of the flow for small permeability of the 
medium is investigated. It is shown that the flow in the porous medium is irrotational except in the boundary 
layer next to the surface. The velocity distribution in the boundary layer is given in a universal form. 
Proper boundary conditions connecting the potential flow in the pure fluid region and the potential flow 
in the porous medium are obtained when the boundary layer is neglected. 

1. Introduction 

It  has become an impor tant  problem in many  fields of  engineering to remove small particles 

contained in gases, especially in air. One of  the simple and useful methods o f  removal  will 

be the one by means o f  a fibrous porous  medium, i.e., a filter. M a n y  studies on the filter 

have been done, e.g. the flow a round  fibers, the mot ion  of  a small particle in a fibrous 

medium, the efficiency of  particle removal,  the force acting on the fluid due to the medium, 

etc.. They concern the microscopic character o f  the flow through the filter. The book  of  

Davies [1] may  be referred to for  these studies. 

The investigation o f  the global flow through the filter is also impor tant  to unders tand the 

character  o f  the filter and to make it more  effective. For  this study, Darcy ' s  law may  be 

used as a basic equation. This law expresses that  the (sweepage) velocity is propor t ional  

to  the pressure gradient and it does not  have a convective acceleration o f  the fluid. This 
law is, therefore, considered to be valid for  low speed flows, whereas the speed in the filter 

is no t  always small and the convective force may  be important .  To analyze this kind o f  
flow, we should employ a generalized equation o f  Darcy ' s  law in which the convection term 

is taken into account .***  Several studies [3-6] have been made on the basis o f  a generali- 

* On leave from Department of Aeronautical Engineering, Kyoto University, Kyoto, Japan. 
** Present address: Mitsubishi Heavy Industry Co., Japan. 
*** For a high speed flow, we may also pay attention to the force acting on the fluid by the porous medium. 
The force may deviate from the usual Darcy drag which is proportional to the velocity [2]. However, in the 
case of very porous media such as filters, the deviation will be small enough to be neglected (see Sec. 2). 
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zed Darcy's law accompanied by convection term. It is shown that vorticity emerges at the 
discontinuity surface of permeability when the fluid flows across the surface and that vorti- 
city, if any, decays steadily in the flow where the permeability is constant. These interesting 
phenomena cannot be explained by the usual Darcy's law. 

In a previous paper, Yamamoto and Yoshida [6] considered a suction and injection flow 
through a plane porous wall. They studied especially on the vortex layer attached to the 
surface in the wall and on the flow outside the vortex layer. 

The present study is an extension and generalization of that work. That is, we consider 
a general suction flow into a porous medium with arbitrary but smooth surface. We treat the 
case of small permeability and investigate the asymptotic behavior of the flow for small 
parameter K which includes the permeability. In Sec. 2, we discuss the fundamental equa- 
tion. We will get the solution in power series in K. It is shown in Sec. 3 that the main flow 
in the porous medium except in the boundary layer (vortex layer) next to the surface is 
generally irrotational. In Sec. 4, we investigate the boundary layer whose thickness is of  
O(K) and obtain the velocity and pressure distributions in a universal form. Proper boundary 
conditions connecting the flow in the pure fluid (which is assumed to be irrotational) and 
the potential flow in the porous region are obtained when the boundary layer is neglected. 

2. Fundamental equations 

2.1. General case for high porosity 

We consider a steady flow through an air filter, where the flow velocity is not always small. 
Most filters are made of fibrous materials and their porosity is very close to unity [1], [7]. 
In order to formulate the flow in such a very porous medium, we shall take a body force 
model: We regard the porous medium as an assemblage of small spherical particles fixed 
in space.* We take identical particles with radius a and number density N. Since the 
porosity of the medium is close to unity, we take a so that a3N ~ 0 while aN = finite 
when N -+ ~ .  Then the Reynolds number of a sphere R~ = aV,/v will be very small 
even when V, is not small, where V, is a reference speed and v is the kinematic viscosity. 
The force on the sphere may be given by Stokes' formula, i.e. F = 67ra#V, where V is the 
sweepage velocity and/~ the viscosity of the fluid. The swarm of spheres exerts a force 
6~rapNV per unit volume on the fluid. Since aN = finite when N ~ 0% this body force 
is finite, while the porosity of  this medium (1 - -43naaN) will tend to unity. Let a repre- 
sentative length of the macroscopic flow be L, which is in general much larger than a. 
Then, the Reynolds number R L = V,L/v in the present problem is not so small that we 
must take the convection term in the macroscopic equation of motion. 

The viscous term due to the distortion of the velocity also should be taken into account 
for a general flow. Considering that the porosity of the medium is unity in the present 
body force model, i.e., the fluid occupies almost all parts of the porous medium, we may 
take that the viscous stress z u is expressed in the same form as in a pure fluid: 

* The conception that the porous medium consists of spherical particles is widely used [7-11]. 
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Then, with neglect of  compressibility of  the fluid, the fundamental equations in the porous 

medium are given by 

div V = 0, (2.1) 

p ( V . g r a d ) V  = - grad P - ~--- V + # A V ,  (2.2) 
k 

where P is the pressure, p the density, k is the permeability and is given by (6roaN)-1 for 

the body force model and A the Laplacian. We take V, ,  p V  2 and L as a reference speed, 
pressure and length, respectively. Then, eqs. (2.1) and (2.2) are rewritten in non-dimensional 

forms (we denote the non-dimensional variables by the same notations): 

div V = 0, (2.1 a) 

(V.grad)V = - grad P - K - I V  + R [ 1 A V ,  (2.2a) 

where 

K = ( p V . k ) / ( # L )  = Rr~(k/LZ). (2.3) 

When RL ~ 1, the convection term (left-hand side) of  eq. (2.2a) can be safely neglected 
and the equation is reduced to the one proposed by Brinkman [7], [9], [10]. Hence, it may 

be regarded as an extended equation of Brinkman's equation to a flow for R L ~> 1 through 
a very porous medium. 

The Navier-Stokes equation is the most fundamental equation in a pure fluid region, 
that is, 

div u = 0, (2.4) 

(u" grad)u = - grad p + R ~  1Au, (2.5) 

where u and p are the non-dimensional velocity and pressure, respectively. 
We next consider an appropriate boundary condition at the surface of the porous medium. 

We take a control volume straddling the surface and apply the conservation laws of mass 
and momentum. From the mass conservation law, we have 

V, = u,, ( -  Vo) , (2.6) 

where the subscript n means the normal component  of the velocity to the surface. Taking 

into account that the force due to the porous medium is a body force*, we get the following 
equations from the momentum conservation law: 

R-s ~(z + - z~-) = Vo(U t - Vt), (2.7) 

R~ x(z+ - "cs = p - P, (2.8) 

where the subscript t denotes the tangential components of  the quantities to the surface and 
the signs + and - mean the values evaluated in the pure fluid region and in the porous 
medium, respectively. The tangential velocity in pores at the surface should be continuous 

* The force at the porous surface exerted by the medium on the pure fluid may be 6~zaN/N ~ per unit surface 
and hence this force will tend to zero as N--* oo. 
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because of viscosity and we have one more condition: 

Vt = Ur (2.9) 

These are general fundamental equations and boundary conditions with which we can 
investigate a flow through a very porous medium. It will be interesting to study a general 
flow under the equations derived above. In the present paper, however, we shall mainly 
concern a flow of large Reynolds number (RL ~> 1), because we are considering a high 
speed flow through a filter. The magnitude of the permeability of ordinary porous media 
is very small [7]. Regarding this, we consider a case K ~ 1 and investigate the asymptotic 
behavior of the flow for small K. We assume that the permeability k is constant. It is also 
assumed that the normal velocity v o at the surface is O(1). 

2.2. Fundamental equations for large Reynolds numbers 

Here, we discuss the equations and boundary conditions in case of large Reynolds numbers 
on the basis of the equations derived in Sec. 2.1. To begin with, we shall consider the flow 
in the porous medium. Since the Reynolds number R L is very large, the viscous term in 
eqs. (2.2a) may be neglected except in a thin layer where the velocity changes abruptly. 
The fundamental equations are reduced to 

div V = 0, (2.10) 

(V. grad)V = - grad P - K -  a V. (2.11) 

A thin vortex layer will appear near the surface of the porous medium where the velocity 
changes very rapidly [6]. In this layer, the convection term is balanced with the body force 
term. We can deduce the thickness of the layer by simply comparing the order of both 
terms. Considering that the normal velocity v o is order one, we will find this thickness to 
be O(K). Then, the order of each term in eq. (2.2a) shows 

(Viscous)/(Convection) = (Viscous)/(Body force) = (RLK)- 1 

Hence, if we take 

1 >> K >> RL 1, (2.12) 

the viscous term can be neglected even in a thin vortex layer. The viscous term has only a 
small effect of diffusing vorticity inside and outside the layer and the diffusion disappears 
as RL ~ oe. Consequently, eq. (2.11) holds in a whole region of porous medium. A very 
porous medium may have the permeability of order of 10 -4 cm 2. As an example, let us 
take L = 10 cm and R L = 10 4, then we have K = 10 -2. In this case, the condition (2.12) 
is well satisfied. For a higher speed flow, R [  1 becomes smaller, while K will be larger. 
It is therefore quite possible for real flows to satisfy the condition (2.12). 

We take a similar consideration in the pure fluid region. The viscous term can be neglected 
for R L >~ 1 in a region where the space derivative is order one and eqs. (2.4) and (2.5) 
become 

div u = O, (2.13) 

(u. grad)u = - grad p. (2.14) 
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In a pure fluid region near the surface, there may be a viscous boundary layer which is a 

diffusion layer of  vorticity produced at the surface. Considering that the flow has a normal 
velocity v o at the surface and that the viscous force in eq. (2.5) is balanced with the con- 
vection term in the boundary layer, we will find that the thickness of the layer is of  O ( R [  1) 

and is very small compared with the vortex layer in the porous medium. The tangential 

derivative of the velocity in the vortex layer may be at most O ( K -  1) [6] and so rt- will be 
O(K-1) .  Then, it will be seen from eqs. (2.7) and (2.9) that the variation of the velocity 
in the viscous layer is of  O((RLK)-1)  and is very small. The viscous boundary layer is not 

essential and can be neglected when the condition (2.12) is satisfied. We may treat the 
equation (2.14) in a whole pure fluid region. 

As for the boundary condition, we cannot impose all boundary conditions (2.6)-(2.9) 
on the inviscid equations, because these consist of  lower order derivatives. It  may be con- 
sistent for the inviscid equation to take the boundary condition without considering the 

viscosity. We will get such boundary condition f rom the conservation laws of mass and 
momentum which should hold in this case, too. That  is, by simply letting R L ~ o~ in eqs. 
(2.6)-(2.8), we have [12] 

u = v ,  ( 2 . 1 5 )  

p = P.  (2.16) 

The condition (2.15) says that there is no discontinuity of  the velocity at the surface*. The 
velocity gradient and hence vorticity may, however, be discontinuous at the surface. I f  we 
take into account the viscosity, the vorticity diffuses by the action of the viscosity and a 

viscous boundary layer will appear near the surface. The variation of the velocity in the 
viscous boundary layer is, however, very small and tends to zero as RL ~ oo. This means 
that the viscous boundary layer is not so important  and can be neglected for large R z. 

It  may be clarified from the above discussions that the inviscid equations without viscous 

terms and their corresponding boundary conditions instead of the original viscous equations 
can be treated in the analysis of  a flow for 1 >> K >> R L 1. To understand this more clearly, 

we consider a simple viscous flow on the basis of  the viscous equations (2.1a), (2.2a), 
(2.4)-(2.9) and investigate the behavior of  the flow when 1 >> K >> R L 1. 

We consider the same problem as studied in ref. [6], in which the inviscid equations are 
used. That is, we consider a constant suction flow into a semi-infinite plane porous wall. 
We take the y-axis normal to the wall directed towards the pure fluid region. The porous 
medium is in the region y < 0. We assume that the flow is independent of  the x-coordinate 
lying on the wall surface. At y ~ ~ ,  we may take u = (u, v) = (1, - v ~ )  and p = 1, 

where vo~ is a positive constant. We assume that the flow does not diverge exponentially 

as y ~ - m.  It  is easy to solve eqs. (2.1a), (2.2a), (2.4) and (2.5) together with the con- 
ditions (2.6)-(2.9) at y = 0 and the conditions at y = + oo. We get the following results: 
in the pure fluid region (y > 0) 

2 
u = 1 exp( - -RLv~Y) ,  v = --v~,  p = 1, 

RLv~ + 

* If there is no flow across the surface (Vo = 0), the tangential velocity may be discontinuous. Then, the 
viscosity has an essential role to remove the discontinuity. This is not, however, the present case. 
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and in the porous medium (y < 0) 

RLv~ 
U - exp (2y), 

RLV~ + )~ 

where 

= --�89 + + - ~ -  

V =  -vo~, P = 1 + :=-y,  

K. Yamamoto, N. Iwamura 

The vorticity produced at the surface diffuses to the pure fluid region owing to the viscosity 
and consequently a viscous boundary layer whose thickness is of O(R~ 1) appears in the 
pure fluid region. If we take RL in such a way that the condition (2.12) is satisfied, the 
above solution will reduce to 

u =  1, v =  - v ~ o ,  p =  1, 

U = exp Y - V =  - v ~ ,  P = 1 + - ~ - y .  
\ g v o ~ / '  

It  will be seen that this flow is quite the same as is given in ref. [6]. This means that the 
analysis based on the inviscid equation (2.10), (2.11), (2.13)-(2.16) results in the same 
solution as is obtained from the viscous equation (2. la), (2.2a), (2.4)-(2.9) when 1 >> K ~> R~ 1. 

Now, we proceed to investigate a high speed flow streaming into a porous body whose 
shape is smooth but arbitrary under the inviscid equations and boundary conditions. 
Equation (2.11) is written in another form: 

V x rot V = grad(P + �89 + K - 1 K  (2.17) 

Taking the rotation of the above equation, we get 

(~ .  grad) V - (V. grad)~ = K -  112, (2.18) 

where 

= rot V. 

In this study, we consider the case where the flow in the pure fluid region is irrotational, 
i.e., the flow has a velocity potential q~ 

u = grad ~b. (2.19) 

Putting the above equation into eqs. (2.13) and (2.14), we get 

Aq~ = 0, (2.20) 

p + �89 = constant. (2.21) 

3. Asymptotie field 

First, we discuss the flow in the main region (asymptotic field) of the porous medium where 
the quantities of the flow do not change abruptly. Considering that K is a small quantity, 
we may expand the velocity and the pressure in power series in K:  
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V = VD = V(D ~ + KV(D l) + . . . .  I (3.1) 

p = p ,  = K-ip(D-1) + p(O) + Kp(i)  + . . . .  J 
Here, it is assumed that the leading term of  the pressure is of O(K-1)  to maintain the 
zeroth order flow. Inserting these expansions into eq. (2.18) and equating the same order 
terms in K, we can easily show 

~(~) = rot VD (0 = 0 (i = 0, 1, 2 . . . .  ). (3.2) 

That is, the flow in the asymptotic field is irrotational in any order in K. The flow has a 
velocity potential ~ ,  and 

VD (i) = grad ~(~) (i = 0, 1, 2 , . . . ) ,  (3.3) 

where 

~ ,  = ~(D ~ + K~(o 1) + . . . .  (3.3a) 

Putting eqs. (3.1)-(3.3) into eq. (2.17), we get 

PD + �89 + K - l ~ D  = const. (3.4) 

It is easily shown that the first terms of eq. (3.1) (VD (~ P(D -1)) satisfy the usual Darcy's 
law, i.e., 

VD (~ = - grad p(-1), Ap( - i )  = 0. (3.5) 

That is, the main character of the flow in the asymptotic field is determined by the pressure 
gradient only and the effect of convection exists in higher order terms. The pressure gradient 
along the wall surface of the porous medium is generally order one. Then, eq. (3.5) shows 
that the tangential velocity near the surface in the asymptotic field is at most O(K). On the 
other hand, the tangential velocity at the surface is assumed to be O(1). There is a big 
velocity difference between two tangential velocities, and the boundary condition (2.15) is 
not satisfied. There must be a boundary layer near the surface where the convection affects 
the flow directly. The fluid streaming into the porous medium losses a large amount of 
tangential momentum in a thin layer near the surface. The flow has vorticity in the layer [6]. 
We next consider this vortex layer. 

4. Vortex layer 

4.1. Fundamental equations in orthogonal curvilinear coordinates 

It is convenient for the analysis of the vortex layer (boundary layer) adjacent to the surface 
to introduce orthogonal curvilinear coordinates. We take the x 3 as a coordinate along the 
unit normal n to the boundary (pointed into the porous medium) and the x 1, x2 coordi- 
nates within the parallel surface x3 = const., then an arbitrary position vector is expressed 
by 

x = x3n(xl, x2) + xw(xi, x2), (4.1) 

where Xw = (xw, Yw, Zw) is the position vector on the surface. 
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For simplicity, we shall take the coordinates xl and x 2 in such a way that the coordinate 
lines coincide with the lines of principal curvature of the boundary. Then, the system of 
coordinates is triply orthogonal everywhere. Let R1 and R2 be the principal radii of curva- 
ture of the boundary, where R i is the radius in the direction of x, and is normalized by L. 
We take R i > 0 when the normal points to the center of principal curvature. From eq. (4.1) 
and Rodrigues' formula [13], the metrical coefficients [14] are given by 

1 (1 x a )  l 
Hi Ri ~ (i 1, 2), H 3 1, (4.2)* 

where 

A~ \ Ox i / + \-~x~ ] + \ Ox i ] " (4.2a) 

The fundamental equations (2.10) and (2.17) are now rewritten as follows: 

H t H 2 ~ - ~ x ~ t - f f T ) + ~ x 2  + = 0 ,  (4.3) 

= Hi~x~ {P + �89 2 + V~ + V2)} + K - ' V  i (i = 1, 2), (4.4a, b) 

- {P + �89 + V 2 + Va2)} + K-*V3, (4.5) 
0x3 

where Vi is the xrcomponent  of the velocity. The boundary conditions at Xa - 0 for these 
equations are 

u, = V,, (4.6) 

p = p. (4.7) 

4.2. Analysis of the vortex layer 

We now proceed to the analysis of the vortex layer. In this layer, the tangential momentum 
of the fluid entering into the porous medium across the surface decreases owing to the force 
exerted by the porous medium. Considering that Vi "-~ O(1) at the surface and that the 
convection term in eq. (4.4) is balanced with the body force term, we find that the thickness 
of the layer is of O(K). 

* Here and below, the double suffix does not mean the usual dummy suffix. For example, A~A i is A1A 1 or 

A2A2, etc. 
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Then, we shall introduce a new stretched coordinate related to x3 by 

X 3 = Kt/. 

49 

(4.8) 

Taking into account that the flow will be irrotational as t / ~  o% we may put the solution 
in the vortex layer in the following forms: 

V = VD(x; K) + VB(xl, x2, ~I; K),  ] 
(4.9) 

l P = PD(x; K) + PB(xl, x2, q; K). 

The correction terms VB and P~ should vanish as t / ~  0o. We expand the correction terms 
in power series in K: 

v .  = v~ ~ + ~ v 2 '  + .. . .  I 
(4.10) 

Pa = K-1P(B-1) + P(B ~ + KP(B ') + . . . . .  j 

We should rewrite the asymptotic quantities (3.1) in the new variable. Expanding these 
quantities in power series in K, we get the reordening of VD and PD, i.e., 

V D = V(~ .-}- ~ ~ 3  ]0/~ "1- V(1)(O) 

+ 12 { 1  (Ch2V(~ I,]2 ( ~ V(I) "~ } 
\ ~ - ~  ./o + \ ~-~-,,o ,I + v~(o)  + ..., 

(4.11) 

P~ = K - 1 G - ' ( ~  + ( \ ~ 7 - x ~ / o "  + 

~" 1 / / a 2 P ( D - 1 ) ) ( 0 P ~ ~  ~ } 
+ K [-~ \- ~x~ oqZ + \ axl3-/orl + P(Dx)(O) + . . . .  

where the notations F(0) and (F)o mean the values evaluated at x 3 = 0. The solution in 
the pure fluid region is also expanded in power series in K: 

u = u (~ + Ku (x) + KZu (2) + . . . ,  ] 

p = p(O) + Kp(X) + KZp(2) + . . . ,  

where 

rot u (~ = 0 (i = 0, 1, 2 . . . .  ). 

Then, the boundary conditions (4.6) and (4.7) at ~/ = 0 are rewritten as 

u(1) v(i) v(f) (i = 0, 1, 2, ..), (j  = 1, 2, 3), j = "D,j + "B,j  

0 = G -1) + G -1~, 

p(O = e~) + e~) (i = O, 1, 2 . . . .  ). 

We also have the following conditions as i / ~  o~ 

VB(O p(~-l)  -o 0 0, 1 . . . .  ). ,j ~ 0, (i = 2, 

(4.12) 

(4.12a) 

(4.13a, b, c) 

(4.14a) 

(4.14b) 

(4.15) 
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We substitute eqs. (4.2) and (4.9) together with the expansions (4.10) and (4.11) into the 
fundamental equations (4.3)-(4.5). Expanding the results in power series in K and equating 
the same order terms, we get the equations for the correction terms of the boundary layer. 
From the K - l t h  order term of eq. (4.3), we have 

avi~ = o. 

Considering the boundary condition (4.15), we get the following solution 

VB ~ = 0. ,3 (4.16) 

Therefore, the boundary condition (4.13c) becomes 

u~O)(o) (o) = V~, 3 (0) (>  0). (4.17) 

Putting eq. (4.16) into eq. (4.5) and considering the condition (4.15), we find that the K - l t h  
and K~ order corrections of the pressure are zero; i.e., 

p(-1) = O, P(ff) = O. (4.18a, b) 

From eqs. (4.14a) and (4.18a), we have 

P~-I)(0)= 0. (4.19) 

Equation (3.5) then leads to 

Vo(,~ = 0 (j  = 1, 2). (4.20) 

We next obtain the velocity distribution in the vortex layer. Using the above results 
v(O) (4.16)-(4.18) in eq. (4.4), we have the following equations for B,j 

~1/(o) 
u(3O)(0) ' n,~ ,z(o) 0 (j = 1, 2). - ~  "J7 r B, j = (4.21a, b) 

Solutions of these equations subject to the boundary condition (4.13) together with (4.20) 
are given by 

v(O) = u~O)(0) exp{_t//u(3O)(0)} (j = 1, 2). (4.22a, b) ,J 

It is found that the flow has vorticity. In the pure fluid region, we take a potential flow, 
while vorticity emerges suddenly when the flow crosses the surface. This production of 
vorticity is due to the tangential force to the surface exerted by the porous medium and 
essentially due to the viscosity of the fluid which appears in the form of a body force. 

We proceed to the next order approximation. Inserting eqs. (4.16)-(4.20) into eqs. 
(4.3)-(4.5), we get the following first order equations 

~.,(1) ( ~ / V  (~ a / v ( ~  \~ 
. . . . .  Vvh,38tl A1A2 ,,1 + 8x2 \ Al JJ' (4.23) 
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v(o)v(o) 
"~- rB, j = (--1)  j+ l  v(O) 

" B,j  

• ~ \A~-2 .] (AaA2) -- �89 - 0 ~  

" +  

((v,(O~)) ~ + (v,%,)~ 

(j = 1, 2), (4.24a, b) 

~p~l) J'o-1,v(o,,2 1,v(o),z / 0u(3~ "~ - v(O) 
kVB, 1J "q- "R2 kVB,2)  -]- A~ ~-X~ )o n,1 @ 

/ "~u(1) Tz(1)'~ 
+ A 2 \  ,,,2 + ~,,,3 

We solve these equations under the conditions of (4.13) and (4.15). The calculation is very 
tedious but straightforward and the final results are given by 

VB(~)=AIA2 ~ 0 ~ A, (o) 0 } ,3 t=l ~ (A---~  uI~176 exp(-q/u3 ( )1 ' (4.26) 

V(1) B,j  = [u) '(o) ,,(" u~~176 " D, j  "~ - -  ~(?)(o) 

[\- ~ + u(3O)(O~ rl +-2  ~ + ~ rl 2 exp(-q/u(a~ 

+ [_~[-u}~176 v~(o) As2 ~x~ {(~i+(O))~ + (u~+(O))~) 1 

(o) 0 (o) 0 x [exp(--q/u 3 ( ) ) -  exp(--2q/u 3 ( ))], (4.27a, b) 

p(X) = z=l ~ (u}~ exp ( -  2q/u(3~ 

/ ~u(~ exp(-r//u(3~ (4.28) + 2Atu}~ 

On the way of the calculation, we used the relation (4.12a) concerning the potential flow 
of the outer region. Inserting eqs. (4.22) and (4.27) into the second order continuity equation 
(cf. (4.3)) and solving the resulting equation with (4.15), we get the normal velocity v(~ of �9 B ,  3 

the second order as: 

,a = + r/v~,3 
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x exp ( -  q/u(3~ 

Cui~ ) A, 0 1 
+ L ~  ' 2 ~x~ ((uT)(~ + (u(?)(~ 
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1 1 

)-1 
• [exp(-q/u~~ �89 exp(-2t//uCs~ j .  (4.29) 

Thus, the solution in the vortex layer is given in a universal form. 

4.3. The boundary condition at the wall surface for both potential flows 

Inserting the solution (4.18), (4.26), (4.28) and (4.29) into the other boundary conditions 
(4.13c) and (4.14) which have not been used so far, we get the following equations at 
X 3 = 0: 

P•- 1)(O) = 0, (4.30) 

u(~ = VD(,~ (4.3 la) 

p(~ = P(o~ (4.31 b) 

u(31,(0) = VD(x)(0)+ A1A2 --~. a { A t u(O,u(O) ~ 
,=1 ~Txt~,A~J~ ' 3 Jo'  (4.32a) 

P(l'(0) P(~l)(0)+ 2 {  1 \ a x , /  [ O u ~ 3 ~  = u~~ rE= ~ ~zK, (u}~ + 2A, [ -w-- - /o  u}~ , (4.32b) 

_LI- A, 4'(o){.}.(o)- 
u(:)(0) = D.St"J + A1Azz=l ?xt L A1A2 

( 1 U(31)(0)+ VD(:)(0)) + u}~ 2 u(3~ + - -  
R t 2 u(~ 

4 axe- [(ui~ + (U(z~ " (4.33) 

These equations are the relationships to be satisfied at the surface by both potential flows 
of the pure fluid and porous regions and thus constitute the boundary conditions for these 
potential flow. That is, under these boundary conditions, we may solve the following 

(4.34) 

Laplace equation, 

the pure fluid region 

A~) (1) = 0"~ A ~- ~2/~x2 -}- ~2 /~y2  ..~ ~2 /~z2  ' 

u (1) = grad 4)(0 (i = 0, 1, 2 . . . .  ), 
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Flow with convective acceleration through a porous medium 

the pressure is given by the Bernoulli equation: 

p(0) + �89 = (const.)0, 

p(t) + u(O).u(1) = (const . ) .  

�9 �9 �9 . �9 �9 �9 �9 �9 �9 * �9 , ~ �9 

the asymptotie field o f  the porous region 

A q~(~) = 0 (i = 0, 1, 2 . . . .  ), 

VD (0 = grad ~ ) ,  

the pressure is given by (cf. (3.4)) 

p~- l )  + ~oo) = (Const.)_l,  
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(4.35a) 

(4.35b) 

(4.36) 

(4.37a) 

(4.37b) 

(4.37c) 

v(o). v(o) = (Const.)o, P(D ~ + ~(D 1) + �89 "O 

P o" + + vo o . = (Const . ) .  
�9 �9 �9 �9 . . . . . . . . . . .  

It  is fairly easy to solve the Laplace equation, because it is a linear equation. After solving 
the potential flows, we can get the boundary layer solution byuse of the formulas in Sec. 4.2. 
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